It seems like just about every day, we’re learning of new 3D printing innovations in the medical field, from prosthetics and pharmaceuticals to anatomical models, surgical guides, and implants. But none of these can get very far in the market, and into the hands of the doctors and patients who need them the most, without receiving the very important stamp of approval from the US Food and Drug Administration (FDA).

The agency has to take many factors into account when deciding if a product or device is safe to use – it’s not an easy job, and the FDA often asks for feedback and publishes guidance regarding 3D printing. Still, not everything gets that necessary approval to move forward, so when companies do receive clearance, it’s a big deal.

Early stage orthopaedic company Additive Orthopaedics, LLC is on a mission to integrate biologics (biopharmaceuticals) and advanced manufacturing, in order to ensure a better outcome for the patient. The company is a leader in the 3D printed orthopaedic foot and ankle device market, and received FDA clearance for its first product, a 3D printed titanium digital fusion implant, in the summer of 2016. A month later, the FDA granted Additive Orthopaedics clearance for its 3D printed hammertoe implants, and soon after for its 3D printed osteotomy wedge system, which address bone fractures and osteotomies in the ankle and foot.

By June of 2017, the young company, which only launched its first commercial product line a year ago, received 510(k) clearance from the FDA for a fourth 3D printed device – the intermedullary, minimally invasive Bunion Correction System, which includes a 3D printed implant meant to align and stabilize bunions.

In its short history, Additive Orthopaedics has seen over 1,000 of its devices implanted, and has also developed and patented multiple design structures, which are only possible thanks to 3D printing, that are used in its current and future products. These include its AddBone implant surface technology, Biologic Interface, and its Variable Honeycomb Lattice (VHL) design, which is optimized to allow enhanced bony in-growth throughout the implant structure while remaining strong.

Now, Additive Orthopaedics is sharing more good news – it has received FDA 510(k) clearance for its Patient Specific 3D Printed Bone Segments for the global extremities market.

By Sarah Saunders | 3DPRINT.COM

Image Credit: Additive Orthopaedics

READ MORE



Credits:

Original Content Source